Для каких целей разрушают митохондрии?

Для каких целей разрушают митохондрии? Тренировки

Все мы знаем, что движение — жизнь. И многие из нас знают, что процесс эволюции создал нас идеальными бегунами на длинные дистанции. Как и за счет чего у нас получается двигаться и делать это долго, а зачастую еще и быстро? Всё устроено примерно так: для движения нужна энергия, а для получения энергии нужны кислород и пища. Но как из воды, еды и кислорода получается энергия, используемая для различных нужд организма? Здесь в дело вступает наш самый главный, но невидимый союзник — митохондрия.

Что такое митохондрии?

Слово «митохондрия» постоянно встречается в литературе, посвященной спорту на выносливость, и это неспроста. Почему и зачем маленькой митохондрии уделяется столько внимания?

Митохондрии — это маленькие (размером с 1/2000–1/4000-ю часть кончика иголки) внутриклеточные органеллы, наши миниатюрные энергетические станции, которых в теле человека содержится огромное количество — примерно 2000 митохондрий на одну клетку. Это самый трудолюбивый и, наверно, самый прожорливый компонент клетки.

Любопытен факт происхождения митохондрии. В 1926 году ученый по имени Айвен Уоллин выдвинул предположение, что митохондрии когда-то были самостоятельно живущими бактериями, а в процессе эволюции стали частью нашего организма. На роль «отца» митохондрии в 1985 году группа ученых номинировала микроорганизм со сложным названием Alphaproteobacteria. К слову, даже находясь внутри человеческой клетки, митохондрия продолжает вести вполне самостоятельную жизнь: у нее есть своя «мастерская» по синтезу белка, включая и собственные молекулы ДНК и РНК.

Читайте также:  Когда лучше бегать: утром или вечером?

Для каких целей разрушают митохондрии?

Каким образом митохондрии вырабатывают энергию?

Короткий ответ — при помощи цикла Кребса и переноса электронов в дыхательной цепи. Не пугайтесь! Это значит, что для получения энергии митохондрии используют кислород и углеводы (сахар). Глюкоза, попадая внутрь митохондрии, «переупаковывается» в два важных компонента — пируват и никотинамидадениндинуклеотид (НАД). Эти два вещества транспортируются в центральную часть митохондрии, где в присутствии кислорода (это наиважнейший момент эффективной продукции энергии!) используются для выработки главного энергетического субстрата — АТФ. Правильнее рассматривать АТФ как валюту клетки, которая идет на оплату счетов за свет, воду, газ и электричество.

Как работает валюта под названием АТФ?

Каким образом АТФ помогает нам быть быстрее, выше, сильнее? Конечно, с помощью мышц. Внутри каждой мышечной клетки есть микроскопические нити протеина — актин и миозин. АТФ прикрепляется к миозину и помогает ему «зацепиться» за актин, перемещаясь и вызывая сокращение мышцы. Если по какой-то причине (недостаток кислорода или глюкозы) АТФ в вашем организме будет недостаточно — мышцы не смогут эффективно сокращаться, и вы довольно сильно замедлитесь или даже остановитесь. Знакомая ситуация?

Продукция энергии в мышцах — сложный и комплексный процесс, но для него требуются простые ингредиенты, а именно сахар, кислород и кальций. Сахар — поставщик основных строительных блоков (пируват и НАД) для митохондрий, из которых получится АТФ. Кислород нужен для эффективного производства клеточной «валюты». Кальций помогает глюкозе трансформироваться в пируват и НАД, а также облегчает взаимодействие актина и миозина, помогая мышце сокращаться.

Продукция энергии в мышцах — сложный и комплексный процесс, но для него требуются простые ингредиенты, а именно сахар, кислород и кальций.

Для каких целей разрушают митохондрии?

Зачем нам кислород?

Простой вопрос, но очень часто вызывает недоумение даже у студентов-медиков. Правильный ответ: кислород нужен митохондриям для производства АТФ. Без кислорода невозможна эффективная работа и производство АТФ. При достаточном его наличии скорость выработки АТФ в мышцах примерно в 13 раз выше, чем в ситуации недостаточного снабжения митохондрий кислородом. Говоря о недостатке кислорода и недостаточной выработке АТФ, нужно понимать, что речь идет не столько о нахождении, скажем, в условиях разреженного воздуха гор, а прежде всего о чрезмерно интенсивных (и частых) тренировках выше так называемого «лактатного порога». Каждый раз, проводя такую жесткую тренировку, мы залезаем в кислородный долг у организма, который нужно будет отдавать. Самым надежным способом уберечь себя от накопления этого долга является контроль пульса на тренировках, причем делать это лучше не по ощущениям, а с помощью более точного прибора — пульсометра.

Каждый раз, проводя такую жесткую тренировку, мы залезаем в кислородный долг у организма, который нужно будет отдавать.

Можем ли мы влиять на митохондрии?

Давайте перейдем от теоретических рассуждений к практике. Можем ли мы в реальной жизни влиять на работу митохондрий и, если да, как это сделать?

Самое интересное, что мы довольно легко можем увеличить количество митохондрий в нашем организме и даже улучшить качество их работы. И сделать это нам помогают регулярные аэробные тренировки.

В июльском номере журнала Sports Medicine авторы проследили связь между регулярными тренировками и количеством митохондрий. Оказалось, что аэробные нагрузки влияют на процесс образования митохондрий довольно предсказуемым образом: чем больше вы тренируетесь, тем больше митохондрий образуется. В течение нескольких месяцев количество митохондрий может увеличиться на 50%, но верно и обратное — как только регулярные тренировки прекращаются, количество митохондрий уменьшается, возвращаясь к исходным базовым значениям в течение нескольких месяцев.

чем больше вы тренируетесь, тем больше митохондрий образуется

Больше тренировок — больше митохондрий?

Важно соблюдать баланс в тренировках, так как перетренированность и регулярные тренировки без должного восстановления приводят к повреждению мышечных клеток, включая и митохондрии. Вовремя заметить и не допустить перетренированности, а также оценить качество восстановления можно также с помощью пульсометра, путем наблюдения за пульсом покоя или вариабельностью пульса.

Для каких целей разрушают митохондрии?

Объем или интенсивность?

Как стало понятно, регулярные тренировки — наилучший способ повлиять на митохондрии. Но что выбрать — объем или интенсивность? Правильный ответ — и то и другое. Давайте разберемся, как влияют на митохондрии повышение тренировочного объема и увеличение интенсивности.

Вода и еда?

Оптимальная функция клеток и внутриклеточных структур невозможна без поддержания оптимального водно-электролитного баланса, а также регулярного поступления питательных веществ, в частности углеводов. Внимательно следите за тем, чтобы пить достаточное количество воды, а также соблюдайте сбалансированную диету, чтобы обеспечить организм необходимыми строительными материалами.

Много митохондрий не бывает (вместо вывода)

Митохондрии — наш верный спутник и помощник в повышении выносливости и спортивном долголетии. Используя нехитрые принципы тренировок, мы можем влиять как на количество, так и на качество работы наших энергетических станций. Однако самым важным аспектом в погоне за митохондрией является ежедневное наблюдение за своим состоянием, постепенное повышение как объема, так и интенсивности тренировок, а также соблюдение баланса нагрузки и качественного восстановления. Ваши мышцы и митохондрии скажут вам спасибо новым личным рекордом!

  1. Granata C, Jamnick NA, Bishop DJ. Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Sports Med. 2018 Jul;48(7):1541-1559.
  2. Trewin AJ, Berry BJ, Wojtovich AP. Exercise and Mitochondrial Dynamics: Keeping in Shape with ROS and AMPK. Antioxidants (Basel). 2018;7(1):7.
  3. Heo JW, No MH, Park DH, Kang JH, Seo DY, Han J, Neufer PD, Kwak HB. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle. Korean J Physiol Pharmacol. 2017 Nov;21(6):567-577.

Методы гиперплазии миофибриллярных митохондрий

В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков

Глава 4. Методы управления адаптационными процессами

4.4. Методы гиперплазии миофибриллярных митохондрий

Цель аэробной подготовки развитие в мышечных волокнах митохондрий. Митохондриальный белок синтезируется на 85–95 % в цитоплазме и только 5–15 % белкового содержимого является продуктом собственно митохондриальной трансляции (Ленинджер А., 1966; Лузиков В. Н., 1980).

Белки, синтезируемые на митохондриальных рибосомах, включаются во внутреннюю митохондриальную мембрану. Внешняя мембрана, межмембранное пространство и матрикс комплектуются белками, продуцируемыми на цитоплазматических рибосомах. Набухание митохондрий является одним из проявлений их деградации. Причиной набухания митохондрий могут быть (Лузиков В. Н., 1980; Шмелинг с соав., 1985; Friden et al, 1988; Gollnick et al., 1986) нарушения трансформации энергии (например, за счет исчерпания эндогенных субстратов, при подавлении переноса электронов, при изменении проницаемости внутренней мембраны по отношению к водородным ионам). Предполагается, что исчерпание внутримитохондриального запаса АТФ вызывает набухание митохондрии, что приводит к разрыву внешней мембраны и растеканию компонентов в межмембранное пространство. Имеется естественное старение митохондрий и отдельных ее компонентов (время полужизни — от 1 до 10 суток). Формирование митохондрий в клетке контролируется на основании принципа отбора по функциональному критерию. Согласно этому принципу, митохондриальные структуры, собранные так, что они не могут эффективно трансформировать энергию, элиминируются в ходе митохондриальной дифференцировки (Лузиков В. Н., 1980).

Одним из естественных факторов, приводящих к деструктурированию митохондрий, является гипоксия (например, пребывание в среднегорье) и сопровождающий ее анаэробный метаболизм. В условиях кислородного голодания ухудшаются показатели капилляризации скелетных мышц, появляется внутриклеточный отек, очаговые нарушения сократительного (миофибриллярного) аппарата, деструктивно дегенеративные изменения митохондрий, расширение саркоплазматического ретикулума и резкое снижение содержания гликогена (Шмелинг с соав., 1985)

Аналогичные структурные перестройки имеют место при проведении гликолитических тренировок.

Суммирование положений многочисленных исследований позволяет сделать следующее обобщение:

В соответствии с этими положениями можно разработать методику аэробной подготовки мышцы.

Каждую скелетную мышцу можно условно разделить, например, на три части:

Мышечные волокна, которые регулярно рекрутируются (ОМВ) с предельной для них частотой импульсации, имеют максимальную степень аэробной подготовленности. Максимальная степень аэробной подготовленности ОМВ достигается в том случае, когда все миофибриллы оплетаются митохондриальной системой так, что образование новых митохондриальных структур становится невозможным. Такое явление хорошо показано для миокардиоцитов (Физиология и патофизиология сердца, 1990; Хоппелер Г., 1987). Гипертрофия миокардиоцита не сопровождается увеличением концентрации ферментов аэробного метаболизма. Косвенно эту точку зрения подтверждают многочисленные исследования, посвященные влиянию аэробной тренировки, выполняемой с мощностью до аэробного порога (Аулик И. А., 1990; Зациорский В. М., 1970; Карпман В. Л., 1974, 1978, 1982, 1985, 1988 и др.). Все эти исследования убедительно показывают, что эффективность таких тренировок для уже подготовленных спортсменов равна нулю.

Следовательно, для повышения аэробных возможностей ОМВ необходимо создать в МВ структурную основу новые миофибриллы; после этого около новых миофибрилл образуются новые митохондриальные системы. Если согласиться с этим методом повышения аэробных возможностей, то увеличение силы (гиперплазия миофибрилл) ОМВ должно привести к росту потребления кислорода на уровне АэП и АнП.

Эффективными для повышения МПК или потребления кислорода на уровне АнП являются непрерывные упражнения на уровне АнП или повторный метод тренировки с мощностью работы на уровне МПК. В этом случае рекрутируются как ОМВ, так и более высокопороговые ПМВ, в которых мало митохондрий. Увеличение мощности требует рекрутирования все более высокопороговых ДЕ, в МВ которых преобладает анаэробный гликолиз, что ведет к закислению ГМВ, а затем ОМВ и крови. Закисление ГМВ и ПМВ ведет к деструктивным изменениям в митохондриях, снижению эффективности аэробной тренировки.

Теоретически рассчитанные митохондриальные изменения под влиянием продуктов анаэробного гликолиза совпадают с теми наблюдениями, которые имеют место при ишемии (Friden, 1984; Hoppeler Н., 1986). В этом случае многочисленные ненормальные митохондрии были заметны под сарколеммой. Эти митохондрии имеют увеличенную плотность, измененную форму и паракристаллические включения. Кристаллические включения в митохондриях обнаруживаются при различных патоло-гических состояниях (смотрите, например, обзор Carpenter and Karpati, 1985). Это дает основание к предположению, что структурно нарушенные клетки не могут функционировать нормально. Полирибосомы располагаются либо под сарколеммой, либо рядом с поврежденными миофибриллами; предполагается их участие в процессе реконструкции поврежденного материала. Авторы делают вывод, что частое использование такого варианта тренировки может привести к серьезным повреждениям в мышцах.

Одним из аргументов против предложенной методики увеличения аэробных возможностей ОМВ за счет роста силы (МФ) является мнение: с увеличением размера МВ затрудняется процесс диффузии О2 к центру МВ. Однако, исследования Т. Gayeski e. a. (1986) показали, что рО2 не коррелирует с диаметром МВ. Минимальное рО2 наблюдается не в центре МВ. Эти экспериментальные данные хорошо воспроизводят модели, которые учитывают облегченную диффузию кислорода внутрь МВ посредством миоглобина (Р. Stroeve, 1982). Следовательно, размер МВ не является препятствием к росту аэробных возможностей ОМВ.

Правила методики аэробной подготовки могут быть представлены так:

Высокую эффективность имеет вариант аэробной подготовки, который в последнее время получил большое распространение в практике подготовки спортсменов в циклических видах спорта. Это тренировки, требующие проявления «мышечной выносливости». Смысл их заключается в том, что в циклическом упражнении каждое сокращение мышцы должно выполняться с околомаксимальной интенсивностью, но средняя мощность упражнения не должна превышать мощности АнП. В этом случае в упражнении активны все или почти все МВ, однако, благодаря управлению паузой отдыха или периодом расслабления мышцы, должно полностью обеспечиваться устранение продуктов метаболизма анаэробного гликолиза.

Упражнения с околомаксимальной мощностью сокращения мышц и редким темпом изучали J. Karlsson e. a. (1981). Было показано, что упражнения с темпом 4 максимальных сокращения в минуту вызывают снижение концентрации АТФ на 20 %, КрФ — на 40 %, концентрация лактата в мышце увеличивается до 4,5 мМ/л. В целом упражнение было аэробным, энергия поступала из эндогенного гликогена ОМВ и ГМВ. Экспериментальные данные эффективности скоростно-силовой интервальной тренировки были получены так же Алексеев Г. ВА., 1981; Волков Н. И., 1990, 1995; Cheetham M. et al, 1984; Holmyard D. Et al., 1987; Jacobs I. Et al., 1983; Thorstensson A. Et al., 175, 1976).

Рост аэробных возможностей может происходить на основе увеличения силы ММВ, т. е. можно заниматься статодинамическими упражнениями для гиперплазии миофибрилл в ММВ, и одновременно будут разворачиваться процессы по обеспечению новых миофибрилл новыми митохондриями. Это предположение подтверждается результатами экспериментов С. К. Сарсании (1972).

Студенты-добровольцы ИФК были разбиты на две группы: экспериментальную и контрольную. Обе группы выполняли одинаковую программу силовых упражнений с напряжением мышц 60 % произвольного максимума (ПМ). Упражнения выполнялись по кругу (круговая тренировка) на мышцы-разгибатели рук, сгибатели рук, разгибатели ног, разгибатели спины, мышцы живота. В каждом подходе груз медленно поднимался 10 раз, последние два раза выполнялись с явным локальным утомлением, но не до отказа. Каждый испытуемый проходил три круга. В неделю было 3 тренировки, тренировались 4 недели. Экспериментальная группа (8 человек) принимала анаболические препараты (ритоболил или нейробол) по 0,18 мг/кг массы тела (терапевтическая доза). В контрольной группе был прием плацебо в виде комплекса витаминов.

До и после эксперимента все испытуемые прошли антропометрическое и функциональное тестирование в ступенчатом тесте с определением потребления кислорода.

В контрольной группе произошли изменения по всем показателям, однако достоверность различий была менее 90 %. Применение анаболических препаратов ускорило ход анаболических процессов, что позволило получить статистически достоверные различия (Р>99 %) по всем зарегистрированным показателям. К наиболее интересным результатам следует отнести:

Таким образом, статодинамические упражнения являются эффективным средством усиления пластических процессов в скелетных мышцах. Применение анаболических препаратов в терапевтических дозах значительно интенсифицирует анаболические процессы, что ускоряет проверку эффективности разработанных вариантов тренировочного процеса; статодинамические упражнения стимулируют обмен белка, жировой обмен, повышают аэробные возможности медленных мышечных волокон (В. Н. Селуянов В. Н. с соав. , 1991, 1995).

Совокупность изменений в результате применения статодинамических упражнений дает основание к предположению о высокой эффективности применения их в физической подготовке борцов.

Оцените статью
Добавить комментарий