М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE Здоровье

Митохондрии представляют собой специализированные структуры в каждой клетке человеческого организма, кроме эритроцитов. Митохондрии содержат собственную ДНК. По сути, это небольшие, но мощные силовые клетки человека, которые служат батареями для питания различных функций вашего тела. Они отвечают за 90% клеточной энергии в форме аденозинтрифосфата (АТФ) и за поддержку метаболических функций. Митохондрии находятся в разных тканях по всему телу и, таким образом, по-разному служат разным целям этих конкретных тканей. Например, митохондрии в печени помогают превращать аммиак в менее токсичные отходы.

Основные функции митохондрий

Двумя основными функциями митохондрий являются клеточное дыхание и производство энергии. Эти две особенности являются основной причиной, почему вам нужно дышать и есть. Вашим митохондриям требуется как кислород из воздуха, так и глюкоза и жир из пищи для выработки энергии в форме АТФ.

Помимо производства энергии и клеточного дыхания, митохондрии играют роль в других функциях, включая гомеостаз кальция, рост клеток, деление клеток и гибель клеток. Они участвуют в поддержании функции нервной системы, в выработке тепла, являются основным клеточным органом для метаболических функций в цикле Кребса и других дыхательных циклах. Они находятся в синтезе биомолекул.

Проблемы, связанные с митохондриальной дисфункцией, могут возникнуть при рождении, но могут развиться в любом возрасте. Митохондриальные заболевания могут поражать любую клетку и любую часть тела, включая клетки сердца, почек, печени, поджелудочной железы, мышц, головного мозга, нервов, глаз или ушей. Различные состояния, включая болезнь Альцгеймера, диабет, мышечную дистрофию, могут привести к вторичному нарушению функций митохондрий.

Факторы, приводящие к повреждению митохондрий

Важно указать на спираль факторов, которые приводят к повреждению митохондрий. Начнем с неправильного питания, продолжаем хроническими стрессами, ослабляющими иммунную систему, а это приводит к повторным инфекциям разного рода с необходимостью давать антибиотики, что еще больше ослабляет иммунную систему. Токсины, которые воздействуют на вас как снаружи, так и изнутри. Недостаток качественного сна, здесь уместно было бы добавить восклицательный знак. Наконец, процессы, связанные со старением, и упор на так называемое преждевременное старение.

Читайте также:  Энергия в крови связывается с гемоглобином и АТФ. Как работают митохондрии клетки

Эта спираль факторов приводит к сокращению производства энергии, а также к увеличению образования отходов. Эту ситуацию можно сравнить с некачественным топливом, которым вы топите печку дома. Окислительный стресс и горе увеличиваются, производство антиоксидантов снижается. Результатом описанных процессов является неэффективное производство энергии, плохой метаболизм жирных кислот, замедление метаболических реакций, повреждение белковых цепей и вновь усиление окислительного стресса.

И со временем эта спираль приводит к развитию хронического заболевания, как бы болезнь ни называлась. К ним относятся мигрени, сердечно-сосудистые заболевания, синдром хронической усталости, фибромиалгия, метаболический синдром, болезни Альцгеймера и Паркинсона, аутоиммунные заболевания, аутизм. Какова стратегия исправления? Всем ясно, что это не является приоритетом в приеме каких-либо лекарств. Символично, что стратегия должна начать переворачивать спираль вверх дном.

Каждый должен составить план питания, богатый питательными веществами, регулярно заниматься спортом, программировать снижение стресса, создавать условия для улучшения сна, включать голодание и использовать основные питательные вещества, которые, как мы знаем, поддерживают функцию митохондрий: альфа-липоевая кислота, омега-3 ЭПК, глюкозамин, креатин, кверцетин, зеленый чай (эпикатехин), L-карнитин и, наконец, коэнзим Q10.

Митохондрии – это электростанции, производящие необходимую для организма энергию, при этом для работы электростанции требуется качественное топливо. Его нельзя обмануть.

Рассмотрены морфологические и физиологические особенности клеточной органеллы митохондрии. Митохондрии являются “энергетическими станциями клетки”, участвуют в процессах клеточного дыхания и преобразуют порядка 40% энергии окисления субстратов в АТФ, в форму энергии доступную при использовании в многочисленных клеточных процессах. Принято считать, что остальные 60% выделившейся при окислении энергии превращаются в тепло и выводятся из клетки и организма. В статье высказано предположение, что, митохондрия использует энергию окисления более рационально, чем принято считать. 40% используется в процессе фосфорилирования АТФ, а 60%, выделяясь в объёме матрикса митохондрии, вызывают местный подъём температуры и как следствие давления. Повышенное давление в области матрикса сдавливает кристы и митохондрия работает как сильфонный насос. Биологический раствор выдавливается в форме гидродинамического потока из межмембранного пространства и матрикса митохондрии, обеспечивая все внутриклеточные перемещения.

Транспорт веществ внутри клетки и во всём организме обеспечивается кооперативными потоками энергии, продуцируемыми в клетках, т.к. только такие потоки способны совершать работу против сил диссипации, совершать внешнюю работу. В животной клетке действует своеобразный двигатель внутреннего сгорания, преобразующий энергию химических связей в механическую энергию гидродинамических потоков биологического раствора. Особенностью биологического двигателя является то, что производство механической работы в биоцикле сопряжено с синтезом высокомолекулярных соединений из низкомолекулярных субстратов. Так, процессы окисления, идущие с выделением тепла, сопровождаются промежуточным синтезом АТФ, а процессы синтеза белков и других высоко молекулярных соединений, идут с поглощением тепла.

Вся кооперативная энергия в организме вырабатывается на клеточном уровне и расходуется на жизнеобеспечение самой клетки и на внешнюю по отношению к клетке работу (деятельность).

Первичная метаболическая энергия (в виде АТФ и кооперативных гидродинамических потоков гиалоплазмы) производится в митохондриях и частично в цитоплазме за счёт реакций окисления. Цикличность переноса вещества вовнутрь митохондрии и клетки и обратно обеспечивается цикличностью реакций синтеза и диссоциации.

МИТОХОНДРИЯ КАК БИОЛОГИЧЕСКИЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ

Условный цикл производства кооперативной энергии в животной клетке представляется следующим. По причине того, что и межклеточная жидкость, окружающая клетку, и цитоплазма, окружающая эндоплазматическую систему, состоят на 70% из воды, т.е. несжимаемой жидкости, даёт нам основание условно принять процесс в месте протекания реакций окисления и синтеза изохорическим. В местах изохорического разогрева происходит местное повышение давления, возникает перепад давления между зонами протекания реакций и остальной цитоплазмой. Органоидами эндоплазма- тической системы клетки, главным образом в которых протекают циклические процессы окисления, являются митохондрии, где синтезируется энергоноситель организма АТФ.

Строение внутренней мембраны митохондрии – классический пример рациональности природы. С одной стороны это большая, развитая поверхность для течения реакций окисления и синтеза АТФ, с другой – возможность получения гидродинамического потока на принципах сильфона.

Схожесть морфологии митохондрии и ядра позволяет, во-первых, высказать предположение о единстве эволюционного происхождения митохондрии и клеточного ядра. Во-вторых, высказать предположение о наличии у митохондрии пор наподобие ядерных, соединяющих матрикс митохондрии с цитоплазмой и наличие проток, соединяющих межмембранное пространство митохондрии с эндоплазматическим ретикулумом.

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Митохондрия исполняет свои функции в два этапа (два такта). На рисунке – 1 показана последовательность этапов функционирования митоходрии. Здесь цифрой -1 обозначены митохондриальные поры, соединяющие полость матрикса с цитоплазмой. Цифрой -2 обозначены протоки, соединяющие межмембранное пространство митохондрии с пространством ретикулума. На рисунке -1 слева изображён этап сжатия. В этот период в матриксе и на кристах протекают реакции окисления цикла Кребса и дыхательной цепи. Выделяющееся в результате экзотермических реакций окисления тепло вызывает местный рост давления. Давление, воздействуя на площадь крист, заставляет митохондрию сжиматься, и она из палочкообразной формы превращается в округлую, уменьшаясь в объёме. При этом гиалоплазма из межмембранного пространства через протоку поступает в эндоплазматическую сеть, вызывая все внутриклеточные перемещения. Из матрикса гиалоплазма вместе с наработанной АТФ и углекислым газом вытесняется через митохондриальные поры в цитоплазму. На втором этапе (на рисунке -1 справа) в межмембранное пространство сжатой митохондрии из ретикулума через протоку начинает подаваться гиалоплазма. Это приводит к распрямлению митохондрии и она принимает палочкообразную форму, увеличиваясь в объёме. В матриксе создаётся разрежение и в него через митохондриальные поры поступают АДФ, субстраты для реакций окисления и кислород. Митоходрия готовится к новому циклу. Когда часть митохондрий в клетке сжимается, другая часть распрямляется.

Гидродинамические потоки, вырабатываемые митохондриями, и являются движущей силой внутриклеточного сборочного конвейера, основой активного внутриклеточного транспорта. Потоки упорядоченно движутся по развитой циркуляционной системе клеточного ретикулума.

Окислительные реакции, протекающие в митохондриях, или реакции цикла Кребса, в которых высвобождается и запасается большая часть энергии, по праву получили название – энергетический котёл, так как основываются на тех же законах физической химии, что и технические устройства. На фотографиях, полученных с помощью электронных микроскопов, митохондрии имеют или округлую или вытянутую цилиндрическую форму. Это говорит не о различной морфологии, а о различных функциональных состояниях митохондрии.

Возникшим кооперативным гидродинамическим потоком, с одной стороны, выносятся в межклеточную жидкость продукты распада от реакций окисления и продукты синтеза в клетке, которые используются всем организмом, с другой стороны – происходят перемещения по эндоплазматической системе, обеспечивающие функционирование самой клетки. Скажем, перенос информационной РНК, сформировавшейся в ядрышке на матричном гене ДНК, к тому месту эндоплазматической сети, где в рибосоме на матричной базе информационной РНК происходит синтез соответствующего белка. Процесс кооперативного движения протекает до тех пор, пока давление в зонах повышения давления не сравняется с давлением в межклеточной жидкости. Поток из митохондрии и клетки вовне прекращается. Однако в течение кооперативного процесса в соответствующие зоны эндоплазматической системы доставлены исходные материалы для протекания реакций синтеза высокомолекулярных соединений, необходимых организму для функционирования и регенерации. Реакции синтеза – это эндотермические реакции и они протекают с затратой энергии. То есть в полостях эндоплазматической сети, где протекают реакции синтеза, снижается температура и соответственно давление, в результате чего вновь появляется перепад давлений между межклеточной жидкостью и средой эндоплазматической сети, но направленный во внутрь клетки. Вновь возникает кооперативный гидродинамический поток по эндоплазматической сети от меж- клеточной жидкости через внешнюю мембрану во внутрь клетки. При этом в клетку из межклеточной жидкости доставляется новая порция субстратов и других необходимых элементов для протекания следующего функционального цикла клетки и в частности “перезарядка” митохондрий. Как на Рис.1 справа. Поток вовнутрь продолжается до выравнивания давления и температуры внутри клетки и в межклеточной жидкости. Функциональный цикл окисления – синтеза животной клетки замкнулся.

В качестве примера опишем возможный механизм обмена между внутренней полостью ядра и цитоплазмой.

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Условная схема циклического обмена между полостью ядра и цитоплазмой изображена на Рис.2. Здесь: 1 и 2 – внутренняя и внешняя мембрана ядра; 3 – ядерная пора; 4 – ДНК.

Необходимо проведение исследований митохондрий с помощью электронного микроскопа для выявления митохондриальных пор и проток, соединяющих межмембранное пространство митохондрии с полостью эндоплазматического ретикулума, как у клеточного ядра. В случае их обнаружения изменится, принятая на сегодня картина обмена между матриксом митохондрии и цитоплазмой. Будет подтверждён принципиально новый биологический принцип преобразования тепла в работу. Получит объяснение высокий КПД мышечной деятельности, вытекающий из опытов Хилла и противоречащий классической термодинамике.

1. Антонов В.Ф. и др. Биофизика. – М.: “Владос”, 2003г., 288с.

2. Бышевский А.Ш., Терсенёв О.А. Биохимия для врача. Екатеринбург. Изд-во “Уральский рабочий”, 1994г., 384с.

3. Долгов М.А., Косарев А.В. Взаимодействие эластического и гидродинамического компонентов в процессе сокращения и расслабления мышечного волокна. //Вестник Оренбургского гос. у-та №12(79), 2007г., с. 106-112. http://vestnik.osu.ru/2007_12/21.pdf.

4. Каменский А.А. и др. Биология. – М.: ЭКСМО, 2003г., 640с.

5. Косарев А.В. Биодинамика, механизм и условия производства кооперативных потоков энергии в биологических структурах. // Вестник Оренбургского гос. у-та. №6, 2004г., – с. 93-99. http://vestnik.osu.ru/2004_6/17.pdf.

6. Косарев А.В. О морфологических и функциональных особенностях митохондрии. //Материалы Всероссийской научно – технической конференции “Современные проблемы математики и естествознания”. Нижний Новгород: Нижегородский научный и информационно-методический центр “Диалог” , 2009г., с.6-7.

7. Косарев А.В. Монография “Динамика эволюции неравновесных диссипативных сред”. Издание второе, переработанное и дополненное. – Из-во: LAMBERT Academic Publishing, г. Саарбрюккен, Германия, 2013г., 354с.

8. Косарев А.В. Тепловой двигатель на новом термодинамическом принципе преобразования тепла в работу и его работа на естественных перепадах температур возобновляемых источников энергии.

9. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. – М.: “Мир”, 1979г., 512с.

10. Самойлов В.О. Медицинская биофизика. – Санкт-Петербург: “СпецЛит”, 2004г., 496с.

11. Сапин и др. Анатомия человека. Т.1 –М.: “ОНИКС”, 2002г., 464с.

12. Тейлор Д. и др. Биология. / Тейлор Д., Грин Н., Стаут У. /Пер. с англ. Ю.Л. Амченкова, М.Г. Дуниной и др.). – М.: “Мир”. Том 1, 2001г., 454с. Том 2, 2002г., 436с. Том 3, 2002г., 451с.

1 — наружная мембрана;

3 — матрикс;

2 — внутренняя мембрана;

4 — перимитохондриальное пространство.

Свойства митохондрий (белки, структура)
закодированы частично в ДНК митохондрий,
а частично в ядре. Так, митохондриальный
геном кодирует белки рибосом и частично
систему переносчиков электронотранспортной
цепи, а в геноме ядра кодирована информация
о белках-ферментах цикла Кребса.
Сопоставление размеров митохондриальной
ДНК с числом и размером мито-хондриальных
белков показывает, что в ней заложено
информации почти для половины белков.
Это и позволяет считать митохондрии,
как и хлоропласты, полуавтономными, т.
е. не полностью зависящими от ядра. Они
имеют собственную ДНК и собственную
белоксинтезирующую систему, и именно
с ними и с пластидами связана так
называемая цитоплазматическая
наследственность. В большинстве случаев
это наследование по материнской линии,
так как инициальные частицы митохондрий
локализованы в яйцеклетке. Таким образом,
митохондрии всегда образуются от
митохондрий. Широко обсуждается вопрос,
как рассматривать митохондрии и
хлоропласты с эволюционной точки зрения.
Еще в 1921 г. русский ботаник Б.М.
Козо-Полянский высказал мнение, что
клетка — это симбиотрофная система, в
которой сожительствует несколько
организмов. В настоящее время
эндосимбиотическая теория происхождения
митохондрий и хлоропластов является
общепринятой. Согласно этой теории,
митохондрии — это в прошлом самостоятельные
организмы. По мнению Л. Маргелис (1983),
это могли быть эубактерии, содержащие
ряд дыхательных ферментов. На определенном
этапе эволюции они внедрились в
примитивную, содержащую ядро, клетку.
Оказалось, что ДНК митохондрий и
хлоропластов по своей структуре резко
отличается от ядерной ДНК высших растений
и сходна с бактериальной ДНК (кольцевое
строение, нуклеотидная последовательность).
Сходство обнаруживается и по величине
рибосом. Они мельче цитоплазматических
рибосом. Синтез белка в митохондриях,
подобно бактериальному, подавляется
антибиотиком хлорамфениколом, который
не влияет на синтез белка на рибосомах
эукариот. Кроме того, система переноса
электронов у бактерий расположена в
плазматической мембране, что напоминает
организацию электронтранспортной цепи
во внутренней митохондриальной мембране.

Митохондрии

Митохондрии
– это структуры палочковидной или
овальной формы (греч. mitos

нить,
chondros
– гранула). Они обнаружены во всех животных
клетках (исключая зрелые эритроциты):
у высших растений, у водорослей и
простейших. Отсутствуют они только у
прокариот бактерий.

Эти
органеллы впервые были обнаружены и
описаны в конце прошлого столетия
Альтманом. Несколько позже эти структуры
были названы митохондриями. В 1948 г.
Хогебум указал на значение митохондрий
как центра клеточного дыхания, а в 1949
г. Кеннеди и Ленинджер установили, что
в митохондриях протекает цикл
окислительного фосфорилирования. Так
было доказано, что митохондрии служат
местом генерирования энергии.

Митохондрии видны
в обычном световом микроскопе при
специальных методах окраски. В фазово
– контрастном микроскопе и в «темном
поле» их можно наблюдать в живых клетках.

Строение,
размеры, форма
митохондрий очень вариабельны. Это
зависит в первую очередь от функционального
состояния клеток. Например, установлено,
что в мотонейронах мух, летающих
непрерывно 2 часа, проявляется огромное
количество шаровидных митохондрий, а
у мух со склеенными крыльями число
митохондрий значительно меньше и они
имеют палочковидную форму (Л. Б. Левинсон).
По форме они могут быть нитевидными,
палочковидными, округлыми и гантелеобразными
даже в пределах одной клетки.

Митохондрии
локализованы в клетке, как правило, либо
в тех участках, где расходуется энергия,
либо около скоплений субстрата (например,
липидных капель), если таковые имеются.

Строгая ориентация
митохондрий обнаруживается вдоль
жгутиков сперматозоидов, в поперечно-полосатой
мышечной ткани, где они располагаются
вдоль миофибрилл, в эпителии почечных
канальцев локализуются во впячиваниях
базальной мембраны и т.д.

Количество
митохондрий в клетках имеет органные
особенности, например, в клетках печени
крыс содержится от 100 до 2500 митохондрий,
а в клетках собирательных канальцев
почки – 300, в сперматозоидах различных
видов животных от 20 до 72, у гигантской
амебы Chaos
chaos
их число достигает
500 000. Размеры митохондрий колеблются
от 1 до 10 мкм.

Ультрамикроскопическое
строение митохондрий однотипно,
независимо
от их формы и размера. Они покрыты двумя
липопротеидными мембранами: наружной
и внутренней. Между ними располагается
межмембранное пространство.

Впячивания
внутренней мембраны, которые вдаются
в тело митохондрий, называются кристами.
Расположение крист в митохондриях может
быть поперечным и продольным. По форме
кристы могут быть простыми и разветвленными.
Иногда они образует сложную сеть. В
некоторых клетках, например, в клетках
клубочковой зоны надпочечника кристы
имеют вид трубочек. Количество крист
прямо пропорционально интенсивности
окислительных процессов, протекающих
в митохондриях. Например, в митохондриях
кардиомиоцитов их в несколько раз
больше, чем в митохондриях гепацитов.
Пространство, ограниченное внутренней
мембраной, составляет внутреннюю камеру
митохондрий. В нем между кристами
находится митохондриальный матрикс —
относительно электронно плотное
вещество.

Белки внутренней
мембраны синтезируются миторибосомами,
а белки внешней мембраны – циторибосомами.

‘Наружная мембрана
митохондрий по многим показателям
сходна с мембранами ЭПС. Она бедна
окислительными ферментами. Немного их
и в мембранном пространстве. Зато
внутренняя мембрана и митохондриальный
матрикс буквально насыщены ими. Так, в
матриксе митохондрий сосредоточены
ферменты цикла Кребса и окисления жирных
кислот. Во внутренней мембране локализована
цепь переноса электронов, ферменты
фосфорилирования (образования АТФ из
АДФ), многочисленные транспортные
системы.

Кроме белка и
липидов, в состав мембран митохондрий
входит РНК, ДНК, последняя обладает
генетической специфичностью, и по своим
физико-химическим свойствам отличается
от ядерной ДНК.

При
электронно-микроскопических исследованиях
обнаружено, что поверхность наружной
мембраны покрыта мелкими шаровидными
элементарными частицами. Внутренняя
мембрана и кристы содержат подобные
элементарные частицы на «ножках», так
называемые грибовидные тельца. Они
-состоят из трех частей: головки
сферической формы (диаметр 90-100 А°), ножки
цилиндрической формы, длиной 5 нм и
шириной 3-4 нм, основания, имеющего размеры
4 на 11 нм. Головки грибовидных телец
связаны с фосфорилированием, затем
обнаружено, что головки содержат фермент,
обладающий АТФ-идной активностью.

В межмембранном
пространстве находится вещество,
обладающее более низкой электронной
плотностью, чем матрикс. Оно обеспечивает
сообщение между мембранами и поставляет
для ферментов, находящихся в обеих
мембранах, вспомогательные
катализаторы-коферменты.

В
настоящее время известно, что наружная
мембрана митохондрий хорошо проницаема
для веществ, имеющих низкий молекулярный
вес, в частности, белковых соединений.
Внутренняя мембрана митохондрий обладает
избирательной проницаемостью. Она
практически непроницаема для анионов
(Cl-1,
Br-1,
SO4-2,
HCO3-1,
катионов Sn+2,
Mg+2,
ряда cахаров
и большинства аминокислот, тогда как
Са2+,
Мп2+,
фосфат, многокарбоновые
кислоты
легко проникают через нее. Имеются
данные о наличии во внутренней мембране
нескольких переносчиков, специфических
к отдельным группам проникающих анионов
и катионов. Активный транспорт веществ
через мембраны осуществляется благодаря
использованию энергии АТФ-азной системы
или электрического потенциала,
генерируемого на мембране в результате
работы дыхательной цепи. Даже АТФ,
синтезированная в митохондриях, может
выйти с помощью переносчика (сопряженный
транспорт).

Матрикс
митохондрий представлен мелкозернистым
электронно-плотным веществом. В нем
располагаются миторибосомы, фибриллярные
структуры, состоящие из молекул ДНК и
гранул, имеющих диаметр более 200А◦
образованные
солями: Ca3(PO4),

Ba3(PO4)2,
Mg3(PO4).
Полагают, что гранулы служат резервуаром
ионов Са+2
и Мg+2.
Их количество увеличивается при изменении
проницаемости митохондриальных мембран.

Присутствие
в митохондриях ДНК обеспечивает участие
митохондрий в синтезе РНК и
специфических
белков, а также указывает на существование
цитоплазматической наследственности.
Каждая митохондрия содержит в зависимости
от размера одну или несколько молекул
ДНК (от 2 до 10). Молекулярный вес
митохондриальной ДНК около (30-40)*106
у простейших, дрожжей, грибов. У высших
животных около (9–10) *106.

Длина
ее у дрожжей примерно равна 5 мкм, у
растений – 30 мкм. Объем генетической
информации, заключенный в митохондриальной
ДНК, невелик: он состоит из 15-75 тыс. пар
оснований, которые могут кодировать в
среднем 25-125 белковых цепей с молекулярным
весом около 40000.

Митохондриальная
ДНК
отличается
от ядерной ДНК
рядом особенностей:
более высокой скоростью синтеза (в 5-7
раз), она более устойчива к действию
ДНК-азы, представляет собой двухкольцевую
молекулу, содержит больше гуанина и
цитозина, денатурируется при более
высокой температуре и легче
восстанавливается. Однако не все
митохондриальные белки синтезируются
митохондриальной
системой. Так, синтез цитохрома С и
других
ферментов
обеспечивается информацией, содержащейся
в ядре. В матриксе митохондрий локализованы,
витамины А, В2,
В12,
К, Е,
а
также гликоген.

Функция
митохондрий
заключается
в образовании энергии, необходимой для
жизнедеятельности клеток. Источником
энергии в клетке могут служить различные
соединения: белки, жиры, углеводы. Однако
единственным субстратом, который
немедленно включается в энергетические
процессы, является глюкоза.

Биологические
процессы, в результате которых в
митохондриях образуется энергия, можно
подразделить на 3 группы: I
группа – окислительные реакции, включающие
две фазы: анаэробную (гликолиз) и аэробную.
II
группа – дефосфорилирование, расщепление
АТФ и высвобождение энергии. III
группа – фосфорилирование, сопряженное
с процессом окисления.

Процесс окисления
глюкозы вначале происходит без участия
кислорода (анаэробным или гликолитическим
путем) до пировиноградной или молочной
кислоты.

Однако при этом
энергии выделяется лишь небольшое
количество. В дальнейшем эти кислоты
вовлекаются в процессы окисления,
которые протекают с участием кислорода,
т. е. являются аэробными. В результате
процесса окисления пировиноградной и
молочной кислоты, названной циклом
Кребса, образуется углекислый газ, вода
и большое количество энергии.

Образующаяся
энергия не выделяется в виде тепла, что
привело бы к перегреванию клеток и
гибели всего организма, а аккумулируется
в удобной для хранения и транспорта
форме в виде аденозинтрифосфорной
кислоты (АТФ). Синтез АТФ происходит из
АДФ и фосфорной кислоты и вследствие
этого называется фосфорилированием.

В здоровых клетках
фосфорилирование сопряжено с окислением.
При заболеваниях сопряженность может
разобщаться, поэтому субстрат окисляется,
а фосфорилирование не происходит, и
окисление переходит в тепло, а содержание
АТФ в клетках снижается. В результате
повышается температура и падает
функциональная активность клеток.

Итак,
основная функция митохондрий
заключается
в выработке практически
всей энергии клетки и происходит синтез
компонентов, необходимых для деятельности
самого органоида, ферментов «дыхательного
ансамбля», фосфолипидов и белков.

Еще одной стороной
деятельности митохондрий является их
участие в специфических синтезах,
например, в синтезе стероидных гормонов
и отдельных липидов. В ооцитах разных
животных образуются скопления желтка
в митохондриях, при этом они утрачивают
свою основную систему. Отработавшие
митохондрии могут накапливать также
продукты экскреции.

В
некоторых
случаях (печень, почки) митохондрии
способны аккумулировать вредные вещества
и яды, попадающие в клетку, изолируя их
от основной цитоплазмы и частично
блокируя вредное действие этих веществ.
Таким образом, митохондрии способны
брать на себя функции других органоидов
клетки, когда это требуется для
полноценного обеспечения того или иного
процесса в норме или в экстремальных
условиях.

Биогенез
митохондрий.
Митохондрии
представляют собой обновляющиеся
структуры с довольно кратким жизненным
циклом (в клетках печени крысы, например,
период полужизни митохондрий охватывает
около 10 дней). Митохондрии образуются
в результате роста и деления предшествующих
митохондрий. Деление их может происходить
тремя способами: перетяжкой, отпочковыванием
небольших участков и возникновением
дочерних митохондрий внутри материнской.
Делению (репродукции) митохондрий
предшествует репродукция собственной
генетической системы – митохондриальной
ДНК.

Итак,
согласно взглядам большинства
исследователей, образование митохондрий
происходит преимущественно путем
саморепродукции их de
novo.

Статья на конкурс «Био/Мол/Текст»: Все мы знаем, что митохондрии — это энергетические станции клеток, которые производят энергию для нашей жизнедеятельности, а также мышления и творчества. И мы часто представляем митохондрии как на рисунке в учебнике — как некие неподвижные структуры в клетке, занимающиеся своим делом. Но на самом деле митохондрии — это очень подвижные, своенравные органеллы, они многое умеют и часто действуют независимо от клетки, в которой находятся, при этом общаясь с ней и оказывая на нее большое влияние. В этой статье мы рассмотрим как раз эту тайную жизнь митохондрий и проследим, как знания о функционировании митохондрий вдохновляют ученых на разработку лекарств.

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Конкурс «Био/Мол/Текст»-2021/2022

Эта работа опубликована в номинации «Свободная тема» конкурса «Био/Мол/Текст»-2021/2022.

Партнер номинации — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Генеральный партнер конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

«Книжный» спонсор конкурса — «Альпина нон-фикшн»

Скачать комикс в pdf

Все мы дышим и едим. Оба этих неотъемлемых атрибута нашей жизнедеятельности обусловлены наличием в наших клетках микроскопических органелл — митохондрий . Потребляя белки, жиры и углеводы, мы снабжаем наши митохондрии необходимыми субстратами для производства молекул АТФ — универсальной энергетической валюты всех живых клеток. За счет энергии АТФ в клетках нашего организма происходят практически все биохимические процессы, необходимые для жизнедеятельности, движения и мышления. Кислород является обязательным условием для работы митохондрий, без него уже в течение нескольких минут клетки начинают погибать.

Организмы, не имеющие митохондрий, могут вовсе не нуждаться в питании органикой и дыхании кислородом. Например, некоторые бактерии-хемосинтетики живут в бескислородной среде и получают всю необходимую энергию за счет энергии химических связей (сероводорода, сульфидов, железа и т.д.), а в качестве источника углерода эти организмы используют не органические соединения, а углекислый газ.

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Рисунок 1. (а), (б) — просвечивающая электронная микрофотография среза сердца крысы. (б), (в) — желтым цветом обведены контуры мембран митохондрии, стрелками обозначены внутренние структуры: матрикс, межмембранное пространство (ММП) и кристы

фотография автора на просвечивающем электронном микроскопе JEM-1011 в ЦКП МГУ

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Рисунок 2. Схематичное изображение небольшого участка митохондрии: внутренняя, внешняя мембрана, межмембранное пространство. Темно-синими стрелками показан путь электрона вдоль мембраны. Зелеными стрелками показано движение протонов через мембрану. Описание в тексте.

Рассмотрим рисунок 2. На внутренней мембране расположены крупные белковые комплексы. Это электрон-транспортная цепь (ЭТЦ), или дыхательная цепь митохондрий. Почему она так называется? По этой ЭТЦ от I и II до IV комплекса бегут электроны, как ток по проводам (путь электронов — ē — показан темно-синими стрелками). Внутри комплексов ЭТЦ находятся особые молекулы — кофакторы (железосерные кластеры, флавины, цитохромы), расположенные в таком порядке, чтобы электроны легко перебегали по ним в нужном направлении .

Строго говоря, направление движение электронов по ЭТЦ обеспечивается редокс-потенциалами (или окислительно-восстановительными потенциалами) кофакторов комплексов ЭТЦ: электроны перемещаются от молекул с донорными свойствами (с низким редокс-потенциалом), то есть легко отдающим электрон, к молекулам с акцепторными свойствами (с высоким редокс-потенциалом), легко принимающим электрон. При перемещении электрона донор окисляется, а акцептор восстанавливается. Наиболее подробно этот процесс описан в классических учебниках по биохимии Ленинджера (глава 19) и по биоэнергетике Николлса (глава 3) или Скулачева с соавт. (глава 4).

Откуда ЭТЦ берет электроны? В цитоплазме клетки происходит гликолиз — окисление глюкозы до пирувата, который попадает в матрикс митохондрий, где участвует в цикле Кребса . В результате этого процесса образуются две важные молекулы: НАДН и сукцинат. Эти молекулы и служат донорами электронов в ЭТЦ. Они отдают свои электроны комплексу I и комплексу II, окисляясь до НАД+ и фумарата. С этих комплексов электроны поступают на молекулы убихинонов (коферменты Q) — единственных подвижных жирорастворимых переносчиков электронов в ЭТЦ. Также коферменты Q получают электроны от окисления жирных кислот (ЖК). Убихиноны с электронами (то есть в восстановленном состоянии) называются убихинолы. Они доплывают до комплекса III, передавая электрон на цитохромы типа В.

Не только углеводы являются поставщиками субстратов для цикла Кребса. Еще это делают белки в результате так называемых анаплеротических (то есть дополнительных) реакций.

Далее путь электронов раздваивается: один электрон возвращается на хинон, а второй — поступает на цитохром С (ЦитС) — единственный мобильный водорастворимый переносчик электронов, который плавает в межмембранном пространстве и «довозит» электрон до IV комплекса. Это финальная точка ЭТЦ. Электроны, добежавшие до конца, выполнили свою задачу и уже больше никому не нужны. Они утилизируются с помощью кислорода (О2). Кислород работает чем-то вроде мусорной корзины для электронов, забирая их из ЭТЦ, и, соединяясь с протонами, превращается в воду (Н2О).

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Как попасть в митохондрию?

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Рисунок 3. «Потребители» потенциала митохондрий: перенос ионов (фосфата, кальция и натрия) между матриксом и межмембранным пространством (а затем и цитоплазмой клеток) обеспечивается рядом белковых транспортеров за счет энергии мембранного потенциала. Кроме этого, мембранный потенциал необходим для транспорта образовавшихся в матриксе митохондрий молекул АТФ в цитоплазму клеток, для создания восстановительного эквивалента НАДФН из НАДН и для многих других процессов.

М ИТОХОНДРИИ КАК БИОЛОГИЧЕСКАЯ ТЕПЛОВАЯ ДВИГАТЕЛЬ ВНУТРИ KLEOTIC KONEQUE

Оцените статью
Добавить комментарий