Адаптация скелетных мышц человека к физическим нагрузкам

Адаптация скелетных мышц человека к физическим нагрузкам Тренировки

Даны определения адаптации, стресса (общего адаптационного синдрома) и суперкомпенсации. Рассмотрены виды адаптации (срочная и долговременная) и условия адаптации скелетных мышц человека к физическим нагрузкам.

Адаптация скелетных мышц человека к физическим нагрузкам

Адаптация скелетных мышц человека к физическим нагрузкам

Организм человека устроен таким образом, что, попадая в новые для него условия, он может к ним приспособиться. Такое свойство организма человека получило название адаптация.

Понятия адаптации и стресса

Стресс – неспецифическая (общая) реакция организма на воздействие, нарушающее его гомеостаз.

Г. Селье установил, что на разные по качеству, но сильные раздражители (стресс) организм для выравнивания гомеостаза всегда отвечает однотипными реакциями, которые были названы им общим адаптационным синдромом.

Спортивную тренировку можно рассматривать как адаптацию организма спортсмена к нагрузкам определенной направленности. При этом под воздействием систематических тренировочных нагрузок внутренняя среда организма человека претерпевает значительные изменения. После прекращения нагрузки в организме начинаются процессы, направленные на восстановление исходного состояния.

Виды адаптации

Различают срочную и долговременную адаптацию организма спортсмена к тренировочным воздействиям. Так как основным объектом этой статьи являются скелетные мышцы, вопросы адаптации будут рассматриваться в этом ракурсе.

Долговременная адаптация – структурно-функциональная перестройка, происходящая в организме в ответ на длительное или многократное воздействие физической нагрузки. Долговременная адаптация протекает в организме спортсмена в промежутках между тренировками.

Условия адаптации

Первым условием является многократное (повторное) применение физических нагрузок. Однократная физическая нагрузка не вызывает стойких адаптационных перестроек в организме. Если же физические нагрузки повторяются, в организме создается необходимый метаболический фон, который обеспечивает постепенность формирования морфологических, биохимических и функциональных изменений. При повторяющихся тренировочных нагрузках благодаря активации генетического аппарата мышечных волокон в мышцах увеличивается содержание структурных и сократительных белков, вследствие чего мышцы становятся более резистентными к задаваемой нагрузке.

Вторым условием, определяющим процесс адаптации организма к физическим нагрузкам, является их регулярное применение Необходимость регулярно выполнять физические упражнения связана с изменениями метаболизма, которые происходят в организме в процессе физических нагрузок. В зависимости от интенсивности и длительности физической нагрузки, в организме происходят изменения в обмене веществ, которые могут быть ограничены локальными сдвигами в энергетическом обмене или затрагивать метаболизм всего организма. В последнем случае процесс восстановления метаболизма до уровня покоя занимает значительно больше времени и требует большего периода отдыха.

Долговременная адаптация организма к различным факторам внешней среды возможна благодаря явлению суперкомпенсации (сверхвосстановления). В области мышечной деятельности это явление первыми описали Л.И. Ямпольский (1949) и Н.Н. Яковлев (1949,1955). В основе суперкомпенсации лежит взаимодействие между нагрузкой и восстановлением. Это – циклический процесс и его пусковым стимулом является физическая нагрузка. После нагрузки возникает утомление и резкое снижение работоспособности спортсмена, что соответствует первой фазе цикла. Во второй фазе начинается процесс восстановления работоспособности. К концу второй фазы работоспособность спортсменов достигает исходного уровня. В третьей фазе (фазе суперкомпенсации) работоспособность превышает исходный уровень. Последняя, четвертая фаза характеризуется возвращением работоспособности к исходному уровню (рис.1 а).

Адаптация скелетных мышц человека к физическим нагрузкам

Рис.1. Варианты долговременной адаптации организма человека к физическим нагрузкам

Очень наглядно эффект суперкомпенсации виден на примере восстановления энергетических запасов мышц. Перед началом тренировки в мышцах находится определенное количество энергетических веществ (например, креатинфосфата, гликогена и др.). В результате тренировки происходит снижение уровня этих веществ в скелетных мышцах. После окончания тренировки, в фазе восстановления уровень энергетических веществ в мышечном волокне превышает исходный, то есть происходит суперкомпенсация.

Долговременная адаптация возможна только в том случае, если достигаемые срочный и отставленный тренировочные эффекты от каждой тренировки будут суммироваться (рис.1 b). Поэтому для получения определенного тренировочного эффекта и последующего повышения физической работоспособности очередную физическую нагрузку следует проводить в период преимущественно суперкомпенсации после предшествующей работы. Слишком частые (рис.1 c) тренировки прерывают стадию восстановления до достижения эффекта суперкомпенсации. Вследствие этого возможно постепенное развитие процесса недовосстановления работоспособности и преждевременное наступление утомления, что негативно сказывается на результатах. Слишком редкие тренировки (рис.1 d) в фазе сниженной суперкомпенсации не позволяют закрепить тренировочный эффект, так как каждая последующая тренировка проводится после возвращения функциональных возможностей организма к исходному уровню.

Читайте также:  Тренажерный зал значительно облегчит вам жизнь и позволит повеселиться в самых неожиданных местах

Однако еще в начале ХХ века М.Е. Маршак (1931) установил, что процессы восстановления после тяжелой мышечной работы в различных вегетативных системах протекают гетерохронно, то есть с разной скоростью. Более того, даже в пределах одной и той же системы для разных показателей ее функции возвращаются к уровню покоя не одновременно. В последующем эти данные были подтверждены для многих физиологических и биохимических показателей.

Следует отметить, что процессы восстановления энергетических веществ в мышцах также протекают с разной скоростью и завершаются в разное время. Вначале из скелетных мышц и крови удаляется молочная кислота, которая окисляется до СО2 или включается в синтез гликогена, затем происходит ресинтез креатинфосфата, гликогена и жиров.

Существует правило Энгельгардта, согласно которому интенсивность протекания восстановительных процессов и сроки восстановления энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения. Следовательно, чем больше расход энергетических запасов мышц при работе, тем интенсивнее идет их восстановление и тем значительнее превышение исходного уровня в фазе суперкомпенсации. Однако это правило применимо лишь в ограниченных пределах. На основании эмпирических исследований установлено, что во взаимоотношениях тренировочных раздражителей и адаптационных реакций лежат следующие закономерности (Ю. Хартманн, Х. Тюнеманн, 1988):

  • подпороговые раздражители (30% нагрузки от максимально возможной) не вызывают никаких адаптационных сдвигов;
  • слишком высокие раздражители (большой объем и интенсивность нагрузки) вызывают спад результатов;
  • оптимальные нагрузки приводят к оптимальным результатам.

В процессы адаптации, возникающие при интенсивных физических нагрузках, вовлекаются все системы, обеспечивающие функционирование мышц. Наряду с увеличением синтеза сократительных белков мышц возрастает интенсивность функционирования систем, обеспечивающих их катаболизм.

В экспериментах на животных, проведенных П.З. Гудзем (1963), в которых животные вначале подвергались различным по длительности и интенсивности физическим нагрузкам, а затем помещались в тесные клетки, было установлено следующее. Если животные получали умеренные динамические нагрузки или повышенные статические, а затем были переведены в режим гиподинамии, длительное пребывание в тесных клетках не вызвало существенных деструктивных изменений в скелетных мышцах. Однако у животных, которые до этого получали повышенные физические нагрузки, через четыре недели пребывания в тесных клетках были обнаружены дистрофические и деструктивные изменения гипертрофированных мышечных волокон. Из этого можно сделать вывод, что адаптированные к высоким физическим нагрузкам системы, отвечающие за катаболизм белка, после резкого снижения физических нагрузок продолжают функционировать некоторое время с максимальной мощностью, что приводит к резкой дистрофии и деструктивным изменениям в мышечных волокнах.

Третьим условием достижения прочных адаптационных сдвигов является постепенное увеличение физических нагрузок как по объему, так и по интенсивности. Если это условие не будет соблюдено, то по мере адаптации организма к тренировочным нагрузкам будет постепенно снижаться величина энерготрат и изменения метаболизма будут менее выраженными (М.И. Калинский, В.А. Рогозкин, 1989).

С биохимической точки зрения можно выделить несколько факторов, изменения которых существенно влияют на обмен веществ тренированного с помощью физических нагрузок организма. Во-первых, в скелетных мышцах и других органах и тканях повышаются запасы энергетических ресурсов (креатинфосфата и гликогена). Во-вторых, расширяются потенциальные возможности ферментного аппарата: повышается активность ферментов гликолиза, цикла лимонной кислоты, окисления жирных кислот, систем транспорта ионов. В-третьих, улучшаются механизмы регуляции обмена веществ с участием нервной и эндокринной систем, а также внутриклеточной системы автономного регулирования. Все эти факторы – наличие повышенного количества энергетических ресурсов и увеличенная активность ферментных комплексов, обеспечивающих основные циклы энергетического метаболизма – открывают возможности для более быстрого и более длительного пополнения запасов АТФ в организме.

Читайте также:  Боль в боку, возникающая при ходьбе

В отличие от креатинфосфата и гликогена, концентрация АТФ в тканях тренированного организма не возрастает, однако, меняется скорость обмена молекул АТФ, так как повышается каталитическая активность ферментов, участвующих в гидролизе АТФ во время мышечного сокращения и в процессе ресинтеза. Под влиянием физических нагрузок в скелетных мышцах увеличивается концентрация креатинфосфата и повышается активность фермента креатинкиназы, участвующего в ресинтезе АТФ. Это приводит к расширению энергетических ресурсов в мышце и повышению скорости восстановления АТФ из креатинфосфата.

Саркоплазматическая и миофибриллярная гипертрофии скелетных мышц возможны только в том случае, если будут соблюдены описанные выше условия.

  • Маршак, М.Е. О восстановительном периоде после мышечной работы / М.Е. Маршак // Физиологический журнал СССР, 1931. – Т.14. – № 2-3. – С. 204.
  • Яковлев Н. Н. Очерки по биохимии спорта. М.: Физкультура и спорт, 1955. 264 с.
  • Хартманн, Ю. Современная силовая тренировка / Ю. Хартманн, Х. Тюнеманн. – Берлин: Шпортферлаг, 1988. – 335 с.
  • Самсонова А. В. Гипертрофия скелетных мышц человека: Учеб. пособие. СПб: Кинетика, 2018. 159 с.

МЕТАБОЛИЧЕСКИЕ ИЗМЕНЕНИЯ В ОРГАНИЗМЕ СПОРТСМЕНОВ ПРИ АДАПТАЦИИ К ФИЗИЧЕСКИМ НАГРУЗКАМ

Опарина Ольга Николаевна1, Кочеткова Елена Федоровна21ФГБОУ ВПО «Пензенский государственный университет», доктор биологических наук, профессор кафедры «Теоретические основы физического воспитания»2ФГБОУ ВПО «Пензенский государственный университет», кандидат биологических наук, доцент кафедры «Теоретические основы физического воспитания»

АннотацияВ статье отмечаются метаболические изменения в организме спортсменов, которые могут являться прогностическими показателями развития реакций адаптации или дизадаптации при выполнении физических нагрузок.

Ключевые слова: адаптация, дизадаптация, метаболизм, физическая нагрузка.

METABOLIC ALTERATIONS OCCURRING IN ATHLETES’ BODIES IN THE COURSE OF ADAPTATION TO EXERCISE LOAD

Oparina Olga Nikolaevna1, Kochetkova Elena Fedorovna21Penza State University, D.Sc. (Biology), Professor, the Chair of Theory of Physical Education2Penza State University, Cand. Sc. (Biology), the Chair of Theory of Physical Education

AbstractThe metabolic changes are mentioned that take place in athletes’ bodies and can be considered as predictive indices of adaptation and disadaptation reactions developing under exercise loads.

Keywords: adaptation, disadaptation, metabolic, physical load

Рубрика: 03.00.00 БИОЛОГИЧЕСКИЕ НАУКИ

Долговременная адаптация спортсменов к физическим нагрузкам разной интенсивности сопровождается специфическими изменениями в структуре метаболизма. Известно, что нагрузки высокой интенсивности преимущественно обеспечиваются углеводами, тогда как длительные малоинтенсивные нагрузки требуют значительного вовлечения жиров в качестве энергетического субстрата.

Таким образом, отмечаются определенные метаболические изменения в организме спортсменов, которые могут являться прогностическими показателями развития реакций адаптации или дизадаптации  при выполнении физических нагрузок.

  • Суздальницкий Р.С., Меньшиков И.В., Модера Е.А. Специфические изменения в метаболизме спортсменов, тренирующихся в разных биоэнергетических режимах в ответ на стандартную физическую нагрузку // Теория и практика физической культуры. 2000. № 3.
  • Сашенков С.Л., Исаев А.П., Волчегорский И.А. и др. Проблемы и критерии адаптации спортсменов к экстремальным физическим нагрузкам в динамике тренировочно-соревновательного цикла подготовки // Теория и практика физической культуры. 1995. №10.
  • Савин Г.А., Ушакова Е.В., Перфильева О.Н. Уровень лактата в кожном экскрете как показатель физической тренированности спортсменов // Теория и практика физической культуры. 2000.  №1.
  • Нardeman M., Peters Goedhart P. Low hematocrit and plasma fibrinogen in trained athletes increase hemoreological tolerance for physical stress // Clin. Hemoreol. 1995. V.15.
  • Nakanishi Noriyuki, Nakamura Koji et al. Relationship between lifestyle and serum lipid and lipoprotein levels in middle-aged japanes men // Eur. J. Epidimiol. 1999. V.15. №4.
  • Мельников А. А., Викулов А. Д. Взаимосвязь реологических свойств крови с параметрами липидного профиля у спортсменов // Теория и практика физической культуры. 2002. № 2.
  • Hochachka P., Somero G. Biochemical Adaptation. 1988. 568p.
  • Yu H., Ginsburg G., O Tolle M. Acute changes in serum lipids and lipoprotein subclasses in triathletes as assessed by proton nuclear magnetic resonance spectroscopy // Arterioscler. Thrombos and Vascular Biol. 1999. V.19. №8.
  • Kiens B., Richter E. Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans //Am. J.Phys. 1998. V .275. №5. Pt.1.
Читайте также:  Сколько грамм белка нужно в день чтобы похудеть

Все статьи автора «Опарина Ольга Николаевна»

Опарина Ольга НиколаевнаФГБОУ ВПО «Пензенский государственный университет»доктор биологических наук, профессор кафедры «Теоретические основы физической культуры и спорта»

АннотацияВ статье показано, что физические нагрузки вызывают значительные изменения в показателях сердечнососудистой системы, происходит перераспределение кровотока в пользу мышечной системы.

Oparina Olga NikolaevnaPenza State UniversityD.Sc. (Biology), Professor, the Chair of Theory of Physical culture and sport

AbstractThe article shows that physical activity cause significant changes in the cardiovascular system, there is a redistribution of blood flow in favor of the muscular system.

Увеличение объема и интенсивности соревновательных нагрузок в современном спорте предъявляют повышенные требования к сердечнососудистой системе. Именно эта система лимитирует транспорт кислорода и снижает потенциальные возможности физически тренированных людей.

Физическая деятельность сопровождается изменением состояния печеночной гемодинамики, так как именно здесь, нередко ранее других, появляются признаки, ведущие к снижению работоспособности и перенапряжению.

Таким образом, при физических нагрузках учащаются сердечные сокращения, возрастает систолический и минутный объем сердца, систолическое и пульсовое артериальное давление, венозный приток крови к сердцу, снижается периферическое сосудистое сопротивление, происходит перераспределение кровотока в пользу мышечной системы.

  • Беренштейн Г.Ф., Полевой Д.А., Нурбаева М.Н. К методике оценки функционального состояния сердечнососудистой системы студентов // Теория и практика физической культуры. 1993. № 11,12.
  • Никитюк Б.А., Талько В.И. Адаптация компонентов сердечнососудистой системы к дозированным двигательным нагрузкам // Теория и практика физической культуры. 1991. №1.
  • Кочетков А.Г., Бирюкова О.В., Силкин Ю.Р. Морфофункциональные эквиваленты состояния сердца при нагрузках до отказа как отражение стадийности адаптационного процесса // Теория и практика физической культуры. 1991. №1.
  • Граевская Н.Д., Гончарова Г.А., Калугина Г.Е. Еще раз к проблеме “спортивного сердца” // Теория и практика физической культуры. 1997. №4.
  • Абзалов Р.А., Нигматуллина Р.Р. Изменение показателей насосной функции сердца у спортсменов и неспортсменов при выполнении мышечных нагрузок повышающейся мощности // Теория и практика физической культуры. 1999. №8.
  • Шалдин В.И. Клиническая проба с форсированным дыханием в спортивной практике. // Теория и практика физической культуры. 2000. № 4.
  • Харитонова Л.Г., Михалев В.И., Шкляев Ю.В. Теоретическое и экспериментальное обоснование типов адаптации в спортивном онтогенезе лыжников-гонщиков // Теория и практика физической культуры. 2000. № 10.
  • Козырев О.А., Богачев Р.С., Дубенская Л.И. и др. Оценка адаптационных реакций спортсменов-лыжников на этапах подготовки // Теория и практика физической культуры. 2000. №1.
  • Елисеев Е.В. Особенности фазовой структуры диастолы сердца в свете анализа устойчивости сердечнососудистой системы к действию // Теория и практика физической культуры. 2001. №6.
  • Дутов В.С., Северин А.Е., Шастун С.А., Шастун А.С. Динамика показателей сердечного ритма во время выполнения ступенчато возрастающей нагрузки на велоэргометре у обследуемых с различными уровнями физической работоспособности // Теория и практика физической культуры. 1997. №4.
  • Исаев А.П., Быков Е.В., Кабанов С.В. Корреляционный анализ отдельных показателей кардиореспираторной системы для выявления стресс-состояний // Теория и практика физической культуры. 1999. №9.
  • Викулов А.В. Реологические свойства крови в системе комплексной оценке кровообращения у высококвалифицированных спортсменов // Теория и практика физической культуры. 1997. №4.
  • Мавровоуниотис Ф., Аргириаду И., Софиадис Н., Кугиумцидис Ч. Влияние физической нагрузки умеренной продолжительности на соединение ТАТ (тромбин-антитромбин) и ПАП (плазмин-антиплазмин) // Теория и практика физической культуры. 1999. №5.
  • Рубцова М.А. Состояние печеночной гемодинамики у спортсменов высшей квалификации // Теория и практика физической культуры. 1997. №4.
Оцените статью
Добавить комментарий